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ABSTRACT
This paper proposes an incremental approach for building
solutions using evolutionary computation. It presents a sim-
ple evolutionary model called a Transition model in which
partial solutions are constructed that interact to provide
larger solutions. An evolutionary process is used to merge
these partial solutions into a full solution for the problem
at hand. The paper provides a preliminary study on the
evolutionary dynamics of this model as well as an empiri-
cal comparison with other evolutionary techniques on binary
constraint satisfaction.

Categories and Subject Descriptors
Computing Methodologies [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Evolutionary Algorithms, Constraint Satisfaction Problem,
Emergence of Complexity, Local search, Combinatorial Op-
timization

1. INTRODUCTION
In the approach of stochastic local search methods such as

Evolutionary Algorithms (EAs), solutions are represented as
fully defined solutions to the problem [7]. These fully qual-
ifying representations are evolved toward an optimum by
means of optimisation techniques that aim to traverse the
search space in the most efficient and adequate way to the
problem at hand. In this paper, we are interested in devel-
oping an evolutionary algorithm that does not evolve fully
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qualifying solutions but rather builds such fully defined solu-
tions as collaboration of very simple building units. In other
words, collaboration provides an incremental mechanism to
produce more complex solutions. We believe this approach
is promising on problems in which a structure in the com-
ponents of the solution exists but for which this structure
is unknown before hand and therefore needs to be learned
during the optimisation process. This approach is related
to the principal of divide-and-conquer. Yet no division step
occurs. The incremental approach we use to build solutions
is referred to as a Transition model, as a reference to the
biological counterpart that inspired this work [16, 12].

To illustrate the Transition model, we will discuss it within
the context of Binary Constraint Satisfaction Problems
(BINCSP). BINCSP forms an interesting class of problems
to work on. First, it is an already well studied problem
class [17, 1] and therefore, it can be used as a firm bench-
mark for comparison with other evolutionary techniques [19,
4]. Second, it is not a toy problem specifically made for il-
lustrating our model, but is a NP-complete problem where
we shall deliberately use hard to solve problem instances to
evaluate our proposed Transition model. Third, and most
importantly, BINCSP instances can easily be described in
terms of the aggregations of simple solution units. The idea
of aggregating simple solution units was used before to speed
up constraint programming techniques that learn which ag-
gregations are undesirable and, hence, should be avoided [6].
Here we shall take the opposite approach whereby we evolve
aggregations which contribute to solving the problem, i.e.,
are desirable.

The structure of the paper is the following: We first in-
troduce related work on the topic of incremental search. We
then pursue with a short introduction to Binary Satisfac-
tion Problem and how our Transition model can solve such
a problem. We explain the outcome of some experiments
that validate our model and finally we conclude.

2. RELATED WORK
The first attempts to introduce collaboration and cooper-

ation in evolutionary computation were strongly related to
a divide and conquer approach where sub-problems are de-
rived from the entire problem. Each sub-problem is solved
through evolutionary techniques and the collaboration of the
solutions yields a complete solution for the problem at hand
[8, 13]. The divide and conquer approach however is the

599



result of engineering techniques and lacks the principle of
emergence of the complete solutions from the interactions
of simple ones.

Other grouping techniques exist too. Among them, an
interesting approach is given by the so called Multi-Level
Selection Models [9, 10]. In this model, solutions are spread
into groups and evolve within these groups. This approach
intents to favour the specialisation of solutions into solving
certain aspects of the problem. Although it evolves good
collaborating units, it does not address the topic of incre-
mental search.

Finally, the symbiogenetic model proposed by Watson [20,
21] is one of the few mechanisms which tries to address this
problem of incremental search. This approach suggests to
consider incompletely defined solutions. The undefined part
of the solutions are filled in with “don’t care” symbols. In
order to evaluate a solution, a fully defined solution is ob-
tained by aggregating the solutions with others until a full
description of a solution is obtained. This way, solutions
evolve within a context defined by the other solutions and
solutions that solve nicely a part of the problem are more
likely to be selected for the next generation. There is how-
ever a serious cost in this approach. In order to evaluate a
solution, several contexts need to be built, this yields a se-
rious overhead in the evaluation process. Furthermore, this
approach still requires fully described solutions for the evo-
lutionary process to perform, among others, evaluation and
selection.

3. BINARY CONSTRAINTS SATISFACTION
PROBLEMS

Constraint Satisfaction Problems (CSP) [17] form a prob-
lem class, which is NP-complete, where we have on the one
hand a set of variables X associated with possible domain
values D and on the other hand a set of constraints C de-
fined on this set of variables, which prohibits combinations
of assignments to occur. The problem consists of finding
an assignment to the whole set of variables from the asso-
ciated domain values so that all constraints are satisfied. If
this proves to be impossible then the corresponding prob-
lem is said to be unsolvable. A variant of this problem is
the BINCSP, where each constraint is defined on at most
two variables. This forms no restriction on the general form
of CSP as every CSP can be rewritten into a BINCSP and
vice versa [14].

Let us take as an illustration the following BINCSP: con-
sider a set of six variables: X = {x1, x2, x3, x4, x5, x6} all
taking values in D = {1, 2, 3}. We consider the following set
of constraints:

C = {(x1 �= x2), (x2 �= x3), (x3 �= x1),
(x4 �= x5), (x5 �= x6), (x6 �= x4),
(x1 = x4), (x2 = x5), (x3 = x6)}

(1)

This setup of constraints consists of nine binary constraints.
Each binary constraint defines a relation on two variables.
Thus, for each pair of variables, only one binary constraint
may be defined.

The problem consists of finding a correct assignment for
the variables, one which satisfies all the constraints. We de-
note the assignment of one variable xi ∈ X with value d ∈ D
by 〈d, i〉 where i is the index of the variable we consider. Us-
ing this notation, we represent the simultaneous assignments

of variables x1, x2 and x4 with respective values v1, v2 and
v4 as

(〈v1, 1〉, 〈v2, 2〉, 〈v4, 4〉)

4. TRANSITION MODEL FOR PROBLEM
SOLVING

In this section, we will illustrate the key features of our
Transition model by using a simple example of a binary con-
straint satisfaction problem, described by equation (1).

Before going into the example, we introduce the reader
with a number of definitions that we use in the description
of the model:

• A Partial Solution is the assignments of a proper sub-
set of the variable set. An example of a partial solution
will be given by (2).

• A Solution is the case of a partial solution where as-
signments are defined for the entire variable set.

• A Genotype is the representation of the simultaneous
assignment of a partial solution. For example, (2) is
the genotype of the solution that assigns variables 1
and 2 with respective values 1 and 3.

• A Symbiotic Partner is another (partial) solution with
which a solution shall cooperate. (An example is given
by (3)).

• A (induced) phenotype of a solution is the variables as-
signment one obtains when working out the symbiotic
relation of the solution with its symbiotic partner. The
way such a phenotype is obtained and its notation is
explained in the next section.

4.1 Basic Representation
Our model is a simple generational evolutionary algorithm

that starts with a population of partially defined solutions.
A partial solution s that only defines values for x1 and x2:

s = (〈1, 1〉, 〈3, 2〉). (2)

(2) is called the genotype of the solution. In our example
problem, a solution is said to be fully qualifying when as-
signments are defined for all six variables.

The basic principle of incremental search is to place these
partially defined solutions in an interaction framework. For
example, let solution (2) interact with

sp = (〈3, 1〉, 〈2, 3〉).
We call this interacting partner1 the symbiotic partner sp of
(2) as reference to the biological counterpart of our model
and denote the relation by:

(〈1, 1〉, 〈3, 2〉) ↔ (〈3, 1〉, 〈2, 3〉). (3)

The underlying idea behind interaction is information shar-
ing between cooperative individuals, i.e., solutions. The way
information is shared between the two solution described in
(3) is the following:

1At this time, we limit ourselves to pairwise interaction,
however, interaction could also happen with more than one
partner and will be studied in further work
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• The solution genotype is extended with the assign-
ments found in its symbiotic partner:

〈
„

1
3

«
, 1〉, 〈3, 2〉, 〈2, 3〉 (4)

• Conflicting values are solved by randomly selecting one
of the two values with equal probability. In our exam-
ple, a conflict needs to be solved for variable x1. We
can choose between values 1 and 3. A possible conflict
resolution for this example would be:

φ(s, sp) = (〈1, 1〉, 〈3, 2〉, 〈2, 3〉) (5)

where φ(s, sp) defines the induced phenotype between
s and sp. This phenotype is used for evaluating the
solution and the result of the evaluation is assigned to
(2). We use random pairwise interactions of solutions
in our current implementation of the model.

4.2 Evaluation
In the context of BINCSP, we will consider two types

of evaluation. The first type considers the quality of the
partially defined solution relative to the entire constraints
set. This evaluation function corresponds to the classical
approach of fitness computation for CSP solving by EAs
[11]. That is, it is defined as the ratio of constraints from
the constraints set that is satisfied by the solution. The sec-
ond type restricts itself to the subset of constraints that are
covered by the partial solution.

Let us denote by ck(p) the outcome of evaluating phe-
notype p with constraints k, we say that p covers ck if p
contains assignments for all variables contained in ck, fur-
thermore, p satisfies ck if the assignment values in p match
the constraints defined by ck.

ck(p) =


1 p covers ck ∧ p satisfies ck

0 otherwise
(6)

Given this, the classical evaluation of the solution described
by (2) and denoted by s working with a symbiotic partner
sp is given by:

f(s) =
1

|C|
X
k∈C

ck(φ(s, sp)) (7)

where C is the set of pairs of conflicting values, |C| the size
of this set and φ(s, sp) the induced phenotype of s when
sharing information with its symbiotic partner.

This fitness value is a measure of the quality of the par-
tially defined solution with respect to the entire set of con-
straints. It does not, however, give any indication of the
quality of the partially defined assignments with respect to
the constraints it covers. To see whether an association is
beneficial or not, we define a restricted fitness measure that
only considers the constraints covered by the phenotype of
the solution. If we denote by covers(s, C) the set of con-
straints covered by s, the covering fitness measure is given
by:

fcover(s) =
1

covers(φ(s, sp), C)

X
k∈covers(φ(s,sp),C)

ck(φ(s, sp))

(8)
We use the first measure (7) to guide the evolutionary pro-
cess (selection). The second measure is used to decide whether
a solution and its symbiotic partner should be merged into

a more qualifying solution through the use of a transition.
Transitions are described next.

4.3 Reproduction and Transition
In our evolutionary process, solutions are selected accord-

ing to their fitness described by (7). We consider a very
simple evolutionary process that consists of replicating, i.e.,
copying highly fit individuals where small probability of mu-
tation is included. When a solution is selected, it will there-
fore be replicated into a new solution.

In its most simple form, the replication looses the sym-
biotic link that binds the parents, i.e., the interaction does
not survive more than one generation. However, a solution
may help its symbiotic partner to replicate. Currently, this
replication of the symbiotic partner is based on a random
selection, but it could also be based on more problem spe-
cific strategies. When the symbiotic partner is replicated
as well, the symbiotic link, that is, their interaction scheme
will be inherited in the process. The underlying idea is that
(possibly) good collaborating units can survive over more
than one generation.

The replication process as it is described up to now, does
not allow us to evolve more complex solutions. To perform
this task, partial solutions, selected based on (7), are evalu-
ated with (8). If this covering fitness is larger than a certain
threshold value, the solution will be allowed to replicate its
induced phenotype. In this paper, we set this threshold
value equal to 1.0 which means that we request the sym-
biotic relation to solve perfectly the sub-problem at hand.
The goal of this transitional step is to fixate the collabo-
ration that succeeds in solving the sub-problem defined by
the covering set of constraints induced by the phenotype.
This new (partial) solution represents a new entity defined
at a higher level which can interact with other solutions and
produce new symbiotic relations. The general idea behind
our approach is to allow the emergence of useful entities at
higher levels only [2].

Let us take the example solution discussed previously.
The solution described by (2) with the phenotype given
in (5) had a classical fitness value of 0.33. The measure
of the fitness restricted to the covering constraints set was
1. In this case, if the solution is selected, the phenotype
and not the genotype will be replicated and passed on to
the offspring. This means that the representation of the
offspring genotype will be: (〈1, 1〉, 〈3, 2〉, 〈2, 3〉) instead of
(〈1, 1〉, 〈3, 2〉). This is the point of our incremental approach.
Solution are grown incrementally based on their success in
solving the sub-problem they define within the whole prob-
lem.

4.4 A word on recombination
This evolutionary algorithm has no explicit recombination

operation. However, it does combine sub-solutions through
symbiotic relations. This recombination is far from the gen-
eral EA approach, which starts from a genotype that rep-
resents a complete candidate solution to the whole problem
and recombines these genotypes to create new candidate so-
lutions. In our approach, the first phase consists of com-
bining entities of the genotype in order to build fully grown
genotypes. However, once the genotypes are becoming large,
there is a conflict mediation process which recombines the
conflicting part of the genotypes, i.e., chooses which con-
flicting values need to be used in the resulting phenotype.
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This conflict mediation is comparable with a uniform cross-
over operation in the special case when two fully qualifying
genotypes are interacting.

So, even if we cannot talk of a recombination operator be-
cause of the way the Transition model evolves basic entities
into complex ones, there are however similarities between
the recombination operators of EAs and the conflict medi-
ation operation of the Transition model on one hand and
between the building block theory from EA and the way
genotypes are built in the Transition model on the other
hand.

5. EXPERIMENTATION

5.1 Goal
The first goal of our experimentation is to observe whether

the model we made succeeds in incrementally building fully
defined solutions from smaller solution units. If more com-
plex can emerge out of simple units, this means that the
process succeed in aggregating the correct units. By com-
plexity we mean solutions that are more and more precisely
defined for the entire problem.

Furthermore, we would like to see how this model behaves
relative to other evolutionary techniques. We compare the
results of these experiments with three other evolutionary
techniques[5]:

• The co-evolutionary Constraints Satisfaction (CCS):
In this algorithm, the set of constraints is considered
as an interacting population with the solution pop-
ulation. This mimics an arms-race principle where
the constraints used for evaluating the solutions are
selected amongst those which score best, that is for
which solutions score badly. In the same way, the set
of solutions to test the constraints are chosen amongst
those which score best.

• The Micro-genetic algorithm with iterative descent
(MID): This algorithm introduces heuristics to help
the search process. The first heuristic is a specialised
mutation operator that operates like a hill-climbing al-
gorithm on one variable at a time. The second heuris-
tic consists of including a Breakout Management Mech-
anism to escape local optimum that adapts weights in
the evaluation function in such a way that the vio-
lated constraints become more coercitive on the final
result and therefore encouraging the solution to move
towards another peak.

• The Stepwise Adaptation of Weights (SAW): The un-
derlying idea of this algorithms is to let a vector of
weights used in the evaluation function evolve with
the solution populations. This way, it forces the evolu-
tionary algorithm to focus itself on optimising different
part of the problem. These weights are increased over
time for the parts of the problem which are considered
as badly solved by the best individuals.

5.2 Experimental setup
We use randomly generated problem instances of BINCSP

for benchmarking the Transition model against the three
evolutionary algorithms described above. The RandomCSP
package [18] is used to generate the suite of test problem
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Figure 1: Evolution of the genotype sizes for easy
BINCSP for the Transition Model

instances [19]. To scale the difficulty of the problem in-
stances, these BINCSPs are generated accordingly to two
parameters. The first parameter is the density of the con-
straint graph of the BINCSP: If we consider C as the set of
constraints and n as the number of variables in the BINCSP,
we have,

p1 =
|C|„
n
2

« .

This parameter reflects how many constraints there are rel-
ative to the maximum amount of constraints possible.

The second parameter is the average tightness p̄2 of con-
straints, which reflects the average complexity of the con-
straints. That is, how many invalid simultaneous assign-
ments of two variables are allowed given one constraints,
averaged over all constraints. If we denote by |c| the num-
ber of assignments in the constraints c resulting in a non
violation of this constraints, and by m the domain of the
variables in constraints c, we get,

p̄2 =
1

|C|
X
c∈C

„
1 − |c|

m2

«

p1 and p̄2 are so called order parameters, as they can be used
to order the problem instances of a class of problems. By
fixing the number of variables and the domain size of each
variable, and then varying these parameters we can induce
a phase transition [3]. For low values of the parameters, all
problem instances will be solvable. When increasing them,
at some point, unsolvable problems appear, and at some
higher values, all the problems become unsolvable. The con-
jecture is that the location of the phase transition as given
by parameter coordinates coincides with where the hardest
to solve (or to proof unsolvable) problems occur. This gives
rise to the typical easy-hard-easy pattern.

5.2.1 Simulation Parameters
We vary p1 and p̄2 from 0.1 up to 0.9 with a step size of 0.2.

For each combination of p1 and p̄2, we generate 25 random
problem instances for a BINCSP of 15 variables each taking
values in a domain of size 15.
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Figure 2: Evolution of the genotype sizes for difficult
BINCSP for the Transition Model

For each of the 25 problem instances, we perform 10 runs
(each run using a different seed, a population size of 100
and a mutation rate of 0.001). The maximum amount of
evaluations is set to 100 000.

5.2.2 Observations
We collected two types of data over all the runs. The

first set of data should help us to determine whether the
Transition model succeeds in building incrementally more
complex solution instances. The second set of data is used
to compare our algorithm with the three others. We are
interested in following information:

• Solution sizes: We will observe what is the maximum
and minimum size of the solutions over time, together
with the amount of overlap between the symbiotic part-
ners.

• Fitness: We are interested in the fitness evolution over
time, the best achieved fitness, the average fitness of
the population, the fitness of the biggest individual.

• Success ratio: This gives the ratio of successful runs
over the total amount of runs

• Average amount Evaluations to reach a solution: Since
each generation requests exactly one evaluation of the
population, this number is strongly correlated to the
number of generations and therefore gives an idea of
the speed of the algorithm to find a solution. Also,
the fitness calculation forms the most computational
expensive component.

5.3 Results

5.3.1 Examining Incremental Approach Dynamics
The evolution of the average genotype sizes for easy and

difficult BINCSP can be seen in Figure 1 and 2. We ob-
serve that for easy BINCSP, the Transition model succeeds
in finding the solution (in this case, a genotype of size 15)
in at most 200 generations. Also, we see from table 1 that,
for the easy BINCSPs, the speed of the algorithm to find a
solution is correlated to the parameter p1 of the BINCSP.
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This means that it is closely related to the complexity of the
constraints network. For a small amount of constraints, the
connectivity is not too high and the problem can be seen as
a collection of sub-problems. For these problems, the sub-
parts of the problems are easily solvable by the Transition
model. Partial solutions for these sub-parts are soon evolved
and by combining these partial solution, one arrives easily
at a solution for the entire problem.

In Figure 2, the constraints prove to be more difficult
to learn. For low values of p1, a complete solution emerges
almost every time. However, as the constraints become more
difficult to learn, i.e., higher values in the combination of p1

and p2, the evolutionary process fails to build fully defined
solution. The partially defined solutions cooperate in order
to find a best possible compromise to the problem but fail in
solving the conflicts in some of their variables. To observe
that the evolved genotypes are indeed evolving toward a
good compromise, we look at the evolution of fitness over
time.

Figure 3 and 4 show the evolution of average best fit-
ness for the first generations for easy and difficult BINCSP,
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Figure 5: Variation of the genotype size (max, min
and the size of the common variable of best individ-
ual with its symbiotic partner as well as the amount
of conflicting variable amongst this intersection for
the easy BINCSP p1 = 0.1 and p2 = 0.1

respectively. The first graph show without doubt that the
Transition model succeeds in finding a solution as the fitness
converges rapidly to 1.0. The second graph shows that over
5 000 generations, the algorithms converges to a combination
of partial solutions that solves over 90% of the constraints.
Both of these graphs illustrate the remarks we made pre-
viously concerning the sizes of the genotype. The Transi-
tion model performs better on constraint graphs which are
more likely to show structure than on ones that are highly
unstructured. The curve concerning the most difficult prob-
lems to solve, i.e., p1 = 0.7 and p̄2 = 0.5, confirms the
idea that genotypes are evolving into two interacting geno-
types which together are able to solve over 90% of the con-
straint graphs but fail in solving the remaining conflicts,
which therefore prevent them from finding a solution to the
whole problem.

5.3.2 Evolution of the genotype complexity over time
By genotype complexity, we mean the length a genotype

attains over time as the transitions occur. In Figure 5 and
6, we plot the evolution of the maximum size and minimum
size of the genotype in the population. Next to these two
values, we plot the evolution of the size of the intersection of
the best solution genotype with its symbiotic partner’s geno-
type. This intersection gives a measure of the complemen-
tarity of the solution with its symbiotic partner. Finally, we
also plot the evolution of the number of conflicting variables
in this intersection. This measurement of conflicts gives an
idea of the variation present in the population. A high value
for the intersection correspond to a low complementarity. A
low value of conflicts combined with a big intersection re-
sults in a algorithm which has converged to a solution.

In Figure 5, we observe that for easy BINCSP, the inter-
section is small while exploring, which corresponds to a high
complementarity. Once, the algorithm begins to converge
towards a solution, this complementarity decreases. How-
ever, the measurement of the conflicts in the intersection
increases. The measurement of the conflicts in this inter-
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Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.98
(2.6) (3.7) (6.5) (14.8) (3352.9)

0.3 1.0 1.0 1.0 0.21 -
(3.5) (12.8) (61.1) (7363) -

0.5 1.0 1.0 0.51 - -
(4.9) (32) (14426) - -

0.7 1.0 1.0 0.31 - -
(7.5) (89.8) (8710) - -

0.9 1.0 0.98 - - -
(10.6) (3961) - - -

Table 1: success ratio and Average Number of Eval-
uation for the Transition model

section reflects however a low but existing variation in the
population genotype throughout the evolutionary process.

In Figure 6, We show that for difficult BINCSP, a quite
similar evolution occurs. However, in such a case, the evolved
genotype needs a symbiotic partner to cover the entire vari-
able set which implies that the amount of complementarity is
sustained throughout the evolutionary process. On the other
hand, The low value in the measurement of conflicts reflects
the nature of this algorithms to simultaneously evolve two
complementary partial solution that are specialised in solv-
ing two different sub-sets of the constraints set. However,
the difficulty of solving the problem makes it impossible to
solve certain conflicts amongst these variables thereby mak-
ing it impossible to evolve a fully defined solution.

5.3.3 Evaluating Incremental Approach with other
Techniques

The results of the four algorithms for varying values of p1

and p̄2 are given in table 1 to 4. In each table, we show the
success ratio obtained together with the average number of
necessary evaluations to get a solution for each setup of p1

and p̄2.
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Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.62
(3) (15) (449) (2789) (30852)

0.3 1.0 1.0 0.18 0.0 -
(96) (11778) (43217) (-) -

0.5 1.0 0.08 0.0 - -
(1547) (39679) (-) - -

0.7 1.0 0.0 0.0 - -
(9056) (-) (-) - -

0.9 0.91 0.0 - - -
(28427) (-) - - -

Table 2: success ratio and Average Number of Eval-
uation for CCS

Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.96
(1) (4) (21) (87) (2923)

0.3 1.0 1.0 1.0 0.52 -
(3) (50) (323) (32412) -

0.5 1.0 1.0 0.90 - -
(10) (177) (26792) - -

0.7 1.0 1.0 0.0 - -
(20) (604) (-) - -

0.9 1.0 1.0 - - -
(33) (8136) - - -

Table 3: success ratio and Average Number of Eval-
uation for MID

Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.64
(1) (1) (2) (9) (1159)

0.3 1.0 1.0 1.0 0.23 -
(1) (2) (36) (21281) -

0.5 1.0 1.0 0.74 - -
(1) (8) (10722) - -

0.7 1.0 1.0 0.0 - -
(1) (73) (-) - -

0.9 1.0 1.0 - - -
(1) (3848) - - -

Table 4: success ratio and Average Number of Eval-
uation for SAW

From these tables, we see that the Transition model out-
perform CCS on all matters. However, comparing results
with MID or SAW does not show improvements for the Tran-
sition model, on the contrary, it is more likely that MID and
SAW better perform on harder instances than the Transi-
tion model. In general, the performance of the Transition
model is comparable to those of SAW, and it uses less eval-
uations to find a solution than MID. However, it does not
find a solution as often as MID does.

One exception, however, concerns the case where p1 is low
(0.1) and p̄2 is high (0.9). Here, the Transition model finds
more often a solution than the other three algorithms. This
case yields a possible explanation for the reason Transition
models do not perform well on the other hard instances. The
incremental approach consists of letting solution growing as
they succeed in solving sub-parts of the problem instance. If
the problem instance contains some structure in the network
of constraints, the Transition model is more likely to learn
this structure. This is a consequence of the incremental
nature of our Transition model. When there is no structure,
i.e., a very rugged landscape with high epistasis (which can
be directly correlated to higher values of p1), the Transition
model will get stuck in partially interacting solution. Good
compromising partial solutions may still form, but no fully
satisfying solutions will be found.

The test set of random BINCSPs we used are not built to
show specific structure, i.e., to be decomposable into inter-
dependent sub-problems. However, for a low value of p1, the
network of constraints is not very loaded. So, even if the con-
straints to learn are difficult (high p̄2), the Transition model
will conquer these constraints iteratively by solving them up
separately and aggregating them together. The Transition
model is therefore more likely to succeed than a global ap-
proach like SAW or CCS. MID does perform almost as well
as the Transition model on this problem by the nature of
its greedy search on one variable at a time. However, for
this special case, we can conclude that the Transition model
shows improvement comparatively to other co-evolutionary
techniques.

One remark still needs to be stressed. It concerns the
average number of evaluations to a solution for the special
case p1 = 0.1 and p̄2 = 0.9. We observe that the number of
evaluations to a solution is relatively larger for the Transi-
tion model compared to SAW and MID. This yields to the
conclusion that the improved performance in finding a solu-
tion is compensated with the necessary time to find such a
solution.

6. CONCLUSIONS
In this paper, we propose an alternative approach for

problem solving in evolutionary computation that consists of
incrementally building new solutions by combining evolving
solution units. We call this incremental model a Transition
model by reference to the biological term it is inspired from.
To test our model, we apply it to binary constraint satisfac-
tion, where it is tested on a range of problems scaling from
easy to solve up to difficult to solve.

The results from our experiments show that our Transi-
tion model performs almost as well as specifically designed
evolutionary techniques for this problem. Furthermore, we
can deduce from these experiments that the Transition model
is more likely to perform better on problem instances that
induce some form of structure in the search space when be-
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ing solved. However, this structure needs not to be known
beforehand as the Transition model successfully learns it as
the evolutionary process goes along.

We also show that the interaction schema that rules the
partial solution of our model succeeds in combining these
to a full solution or at least a good compromised solution.
This interaction schema, together with the transition feature
of our model, achieves the evolution towards complex solu-
tions from basic solution units as the result of an emergent
process.

Acknowledgements
The third author is supported through a TALENT-Stipendium
awarded by the Netherlands Organization for Scientific Re-
search (NWO).

7. ADDITIONAL AUTHORS
Additional authors: Johan Parent (Vrije Universiteit Brus-

sel, Faculty of Applied Science, ETRO, Pleinlaan, 2, Brus-
sels, Belgium. Email: jparent@info.vub.ac.be)

8. REFERENCES
[1] D. Achlioptas, L. Kirousis, E. Kranakis, D. Krizanc,

M. Molloy, and Y. Stamatiou. Random constraint
satisfaction: A more accurate picture. Constraints,
4(6):329–344, 2001.

[2] H. Bersini. Whatever emerges should be intrinsically
useful. In Proceedings of the ninth international
conference on artificial life, pages 226–231. MIT press,
2004.

[3] P. Cheeseman, B. Kanefsky, and W. Taylor. Where
the really hard problems are. In Proceedings of
IJCAI-91, 1991.

[4] B. Craenen, A. Eiben, and J. van Hemert. Comparing
evolutionary algorithms on binary constraint
satisfaction problems. IEEE Transactions on
Evolutionary Computation, 7(5):424–444, 2003.

[5] A. Eiben, J. van Hemert, E. Marchiori, and
A. Steenbeek. Solving binary constraint satisfaction
problems using evolutionary algorithms with an
adaptive fitness function. In A. Eiben, T. Bäck,
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